67 research outputs found

    Noiseless phase quadrature amplification via electro-optic feed-forward

    Get PDF
    Theoretical results are presented which show that noiseless phase quadrature amplification is possible, and limited experimentally only by the efficiency of the phase detection system. Experimental results obtained using a Nd:YAG laser show a signal gain of 10dB and a signal transfer ratio of T_s=0.9. This result easily exceeds the standard quantum limit for signal transfer. The results also explicitly demonstrate the phase sensitive nature of the amplification process.Comment: 8 pages, 4 figure

    Fabrication and deterministic transfer of high quality quantum emitter in hexagonal boron nitride

    Get PDF
    Color centers in solid state crystals have become a frequently used system for single photon generation, advancing the development of integrated photonic devices for quantum optics and quantum communication applications. In particular, defects hosted by two-dimensional (2D) hexagonal boron nitride (hBN) are a promising candidate for next-generation single photon sources, due to its chemical and thermal robustness and high brightness at room temperature. The 2D crystal lattice of hBN allows for a high extraction efficiency and easy integration into photonic circuits. Here we develop plasma etching techniques with subsequent high temperature annealing to reliably create defects. We show how different fabrication parameters influence the defect formation probability and the emitter brightness. A full optical characterization reveals the higher quality of the created quantum emitters, represented by a narrow spectrum, short excited state lifetime and high single photon purity. We also investigated the photostability on short and very long timescales. We utilize a wet chemically-assisted transfer process to reliably transfer the single photon sources onto arbitrary substrates, demonstrating the feasibility for the integration into scalable photonic quantum information processing networks.Comment: revised versio

    Multimode laser cooling and ultra-high sensitivity force sensing with nanowires

    Full text link
    Photo-induced forces can be used to manipulate and cool the mechanical motion of oscillators. When the oscillator is used as a force sensor, such as in atomic force microscopy, active feedback is an enticing route to enhancing measurement performance. Here, we show broadband multimode cooling of −23-23 dB down to a temperature of 8±18 \pm 1~K in the stationary regime. Through the use of periodic quiescence feedback cooling, we show improved signal-to-noise ratios for the measurement of transient signals. We compare the performance of real feedback to numerical post-processing of data and show that both methods produce similar improvements to the signal-to-noise ratio of force measurements. We achieved a room temperature force measurement sensitivity of <2×10−16< 2\times10^{-16} N with integration time of less than 0.10.1 ms. The high precision and fast force microscopy results presented will potentially benefit applications in biosensing, molecular metrology, subsurface imaging and accelerometry.Comment: 16 pages and 3 figures for the main text, 14 pages and 5 figures for the supplementary informatio

    Suppression of Classical and Quantum Radiation Pressure Noise via Electro-Optic Feedback

    Full text link
    We present theoretical results that demonstrate a new technique to be used to improve the sensitivity of thermal noise measurements: intra-cavity intensity stabilisation. It is demonstrated that electro-optic feedback can be used to reduce intra-cavity intensity fluctuations, and the consequent radiation pressure fluctuations, by a factor of two below the quantum noise limit. We show that this is achievable in the presence of large classical intensity fluctuations on the incident laser beam. The benefits of this scheme are a consequence of the sub-Poissonian intensity statistics of the field inside a feedback loop, and the quantum non-demolition nature of radiation pressure noise as a readout system for the intra-cavity intensity fluctuations.Comment: 4 pages, 1 figur

    Spatial mode storage in a gradient echo memory

    Full text link
    Three-level atomic gradient echo memory (lambda-GEM) is a proposed candidate for efficient quantum storage and for linear optical quantum computation with time-bin multiplexing. In this paper we investigate the spatial multimode properties of a lambda-GEM system. Using a high-speed triggered CCD, we demonstrate the storage of complex spatial modes and images. We also present an in-principle demonstration of spatial multiplexing by showing selective recall of spatial elements of a stored spin wave. Using our measurements, we consider the effect of diffusion within the atomic vapour and investigate its role in spatial decoherence. Our measurements allow us to quantify the spatial distortion due to both diffusion and inhomogeneous control field scattering and compare these to theoretical models.Comment: 11 pages, 9 figure

    A mirrorless spinwave resonator

    Full text link
    Optical resonance is central to a wide range of optical devices and techniques. In an optical cavity, the round-trip length and mirror reflectivity can be chosen to optimize the circulating optical power, linewidth, and free-spectral range (FSR) for a given application. In this paper we show how an atomic spinwave system, with no physical mirrors, can behave in a manner that is analogous to an optical cavity. We demonstrate this similarity by characterising the build-up and decay of the resonance in the time domain, and measuring the effective optical linewidth and FSR in the frequency domain. Our spinwave is generated in a 20 cm long Rb gas cell, yet it facilitates an effective FSR of 83 kHz, which would require a round-trip path of 3.6 km in a free-space optical cavity. Furthermore, the spinwave coupling is controllable enabling dynamic tuning of the effective cavity parameters.Comment: 13 pages, 4 figure
    • …
    corecore